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Summary 

Starting from the known equations describing the deactivation of 
electronic excitation energy of a donor in the presence of acceptors under 
either pulsed or steady state irradiation, and using a coherent mathematical 
formalism, a set of equations is derived which can easily be employed in 
luminescence quenching experiments. The strict connections and in some 
cases the equivalence between the various quantitative and theoretical 
approaches to the study of the transfer process are emphasized. Specific 
models of energy transfer, such as the Perrin-Ermolaev active sphere and 
the Stem-Volmer relation, may be expressed using the same formalism. 

1. Introduction 

A central problem in photochemistry and radiation chemistry is the 
study of the overall deactivation channels of any excited met&able state 
created by the absorption of UV or gamma photons in molecules, atoms, 
ions etc. in the gaseous, liquid and solid phases. An impressive number of 
original papers and reviews has been devoted to the theoretical and experi- 
mental aspects of this problem [ 1). 

A significant channel of deactivation is the transfer of electronic 
excitation energy from excited to unexcited species. The quantitative 
aspects of this fundamental process have been thoroughly studied. How- 
ever, as a consequence of the many different mathematical formalisms 
employed the connections among these theoretical approaches have often 
been overlooked, giving rise to various different interaction models. The 
purpose of this paper is not only to emphasize these connections, but also to 
present a set of equations describing with a coherent formalism electronic 
energy transfer under either pulsed or steady state irradiation. 

The overall deactivation processes of an excited species have generally 
been described quantitatively by the so-called decay functions F(t); of the 
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very many decay functions that have been developed [2 - 351, some that 
are relevant for the derivation of the energy transfer functions H( t) described 
in the following section are presented in the Appendix. 

2. Pulsed excitation: energy transfer functions H(t) 

When a donor-acceptor pair is flashed for a time which is much smaller 
than the lifetime of the excited donors (which are randomly distributed with 
respect to the acceptors) the relative decay functions p(t) may be easily 
reduced to the following general equation which describes the energy tzans- 
fer process: 

p(t)=exp - & I - C*HW~ (1) 

where C, is the acceptor concentration in molecules per unit volume, l/~e 
is the rate of any channel of decay of D* and H(t) is a time dependent 
function, expressed in volume units, which describes any energy transfer 
process between D* and A; this equation obviously corresponds for pulsed 
irradiation to 

p(t) = exp - 
I 

m=l m=l 
t 

(2) 

unimolecular bimolecular 
processes processes 

where the first sum refers to any unimolecular radiative or non-radiative 
decay process of an excited donor D* and the second sum refers to any 
bimolecular radiative or non-radiative decay process of an excited donor D* 
in the presence of an acceptor and other unexcited donor species. 

In general, the energy transfer function N(t) of eqn. (1) can be 
expressed as a time-dependent series containing power terms (which account 
for Coulombic multipolar interactions between an excited donor and 
acceptor) and logarithmic terms (which account for exchange interactions); 
i.e. 

n 

H(t) = k aif”i + x uj(ln At)“‘j (31 
i= 0 j=o 

where ai, ~j and A are experimental parameters; RZ~ = i , z , c , . . . for dipole- 
dipole interactions; ??Sj = 1, 2, 3, _.. _ Some of the possible terms of this series 
are lacking in the equations summarized in Table 1 depending on the 
approximations introduced when deducing the decay functions of the Appen- 
dix; e.g. in eqn. (A5), the error function @(IX:) expanded as a series was 
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TABLE 1 

Energy transfer functions H(t) 

(1) d-d interactions; D = 0 

(2) d-d interactions; D f 0 

H(t) = 4nDRt 

H(t) = 4nDRt + 
8nDR2t1’2 

(IrDjlm 

H(t) = 4rrDRt + 
8nDR2tzp 

cIrDjIp + 4-3 + 8nR$lF 

12r,,R3 12q,R*(nD)‘fl 

(3) Exchange interactions; D = 0 

H(t) = $ {(lnAt)3 + 1.73(lnAt)’ + 5_9(lnAt) + . ..} 

(4) Exchange interactions; D f 0 

H(t) = 4nDRefft + 
8mDR&ft”2 

(nD)‘n 

truncated for terms with powers of t higher than t = +. In any case, the 
energy transfer function N(t) can be thought of as a d4volume of interaction” 
that expands with time around an excited randomXy distributed donor, 
containing different amounts of acceptor molecules. This “active volume” 
is of about lo-l9 cm3 as an order of magnitude for a dipoledipole (d-d) 
interaction at time t = ro- At time t = to this expanding sphere reaches a 
critical value H(t,) = V. of radius R,, when the first and the second term of 
the exponential of eqn. (1) become equal; this value H(t,) of the energy 
transfer function consequently correlates with the F&=&X integral JoqA(F) 
(cm6) which corresponds to the overlapping between the excited donor 
emission and the acceptor absorption spectra in the case of d-d interaction 
and for D = 0, i.e. 
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H( to ) = K { JD** ( Y))li2 cm3 (4) 

where K is an experimental parameter. 
The energy transfer functions H(t) which are valid under pulsed excita- 

tion are given more explicitly in the following sections. 

2.1. Dipole-dipole interaction 
2.1 .l. Stationary donor-acceptor pair; diffusion cuefficien t D = 0 

H(t) = 

This function derives from the Fijrster [ 21 or Galanin [ 331 decay function 
p(t) (see eqn. (Al)). 

2.1.2. Non-stationary donor-uccep tar pair; D # 0 

4n3/2R$ 

*(O = 3 + 
(6) 

This function is derived, after some algebraic manipulation, from the decay 
function developed by Kurskii and Selivanenko [15] (eqn. (AZ)) for donor- 
acceptor pairs in viscous solvents. Quite surprisingly the same function, apart 
from a small numerical difference, can be obtained from the Yokota and 
Tanimoto [16] decay function (eqn. (A4)); i.e. 

(7) 

Both eqns. (6) and (7) contain one term in common with eqn. (5); this 
derives from the fact that in solution the energy transfer functions (eqns. (6) 
or (7)) consist of two terms, the first accounting for stationary and the 
second for diffusion-controlled interactions. Analogously, from the decay 
function developed by Kurskii and Selivanenko for low viscosity solutions 
(eqn. (A3)) the following H(t) function can be derived: 

8nDR2 Pi2 
H(t) = 4nDRt + 

4nR;t 8xR ; t112 

(nD)l12 + 1270R3 + ~~T,,R~(IzD)~‘~ 

It is worth observing that from the Smoluchowski reaction rate, which is 

(8) 

valid for a simple diffusion-controlled collisional interaction, the following 
energy transfer function can be obtained [40] : 

U(t) = 4nDRt + 
EhDR2t112 

(nD)l” 
(9) 
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Consequently, in eqn. (3) the first two terms correspond to a simple 
diffusion-controlled collisional interaction, the third term to a stationary 
d-d and the fourth term to a diffusion-controlled d-d interaction. 

Exactly the same equation can be obtained from the p(t) function of 
Voltz et al. [17] reported in the Appendix as eqn. (A5). 

It does not seem that either Yokota and Tanimoto or Voltz et al. 
were aware of these equivalences. Actually, the decay functions do not 
explicitly show the strict connections between them; however, once a 
coherent mathematical formalism is employed and the energy transfer 
process is described mathematically as in eqn. (l), similarities or equiva- 
lences become obvious. Nevertheless, both eqns. (6) and (3) are incorrectly 
attributed to Yokota and Tanimoto 1161 and to Voltz et al. [ 171, respec- 
tively . 

2.2. Exchange in teraction 
2.2.1, Stationary donor-accep tot pair; D = 0 

XL3 
H(t) = 6 {(lnAt)3 + 1.73(lnAt)2 + 5_9(lnAt) + . ..I (16) 

This H(t) function derives from the Inokuti-Hirayama [ 41 decay function, 
and describes the exponential time-dependent interaction due to electronic 
overlapping between the donor and the acceptor molecules. 

2.2.2. Non-stationary donor-acceptor pair; D # 0 

H(t) = 4nDRerf t + 
8nDR& t1j2 

(nD)l12 
(11) 

This H(t) function, which is derived from the revised Pilling and Rice [ 141 
p(t) function (eqn. (A7)) correlates with the Smoluchowski collisional 
H(t) function of eqn. (9), the only difference being the Rett value. 

The order of magnitude at time t = r. of the numerical parameters ai 
and cj in the series in eqn. (3) for some H(t) functions are given in the 
.following equations: 

Eqn. (5) 

H(t) = 1.13 x lo- IQ = 1.13 X 10mfg cm3 

Em. (6) 

12 
H(t) = 1.13 x lo- lQ + 4.41 X lo-l9 = 5.54 X 10-l” cm3 

Em. (7) 

H(t) = 1.13 x lo- lQ + 1.89 X 10-l’ 5”” = 3.02 X lo-l9 cm3 
(1 70 
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Em. (8) 

H(t) = 1.25 X 10-l” 5 I 5 
m 

+ 2.08 x 10-19 _f_ = 3.33 x 10-1s ems 
70 TO 

The experimental parameters employed’are R0 = 24.8 X lo-’ cm, R = 12.8 
X 10q8 cm, r. = 5.7 X lo-S s and D = 1 X low6 cm2 s-l [36,37] for eqns. (5) - 

(8). 
The ways in which the various terms of eqns. (5) - (11) affect the 

energy transfer functions H(t) are shown in Figs. 1 - 3. The parameters for 
eqns. (10) - (11) of Fig. 3 are Reif = 10 X lo-* cm, L = 3.14 X lo-* cm, 
r. = 2.3 X 10e4 s and R. = 12.9 X lOA cm, 

3. Steady state excitation 

When the exciting light source is kept on continuously, the excited 
donor molecules are no longer distributed randomly and consequently under 
steady state conditions the physical meaning of a “sphere of interaction” 
expanding with time around an excited randomly distributed donor implied 
by the energy transfer function H(t) vanishes. Hence it is no longer possible 
to distinguish unimolecular from bimolecular decay processes, as in eqns. 
(1) and (2). For instance, the decay function of eqn. (Al) becomes [38] 

F(t) =70[1 -7r1’2 4exp(q2) El - erf(a)I 1 (12) 

4. Relative quantum yields 

The importance of the relative quantum yields of s/so luminescence 
derives from their direct correlation with experimental results; although the 
decay functions F(f) for pulsed and steady state irradiation are quite dif- 
ferent the relative quantum yields are the same in both cases [38] even if 
only to a first approximation [ 391. However, the lack of a coherent for- 
malism in expressing the various models of interaction may also in this case 
be a source of confusion in their correct experimental use; hence, it seems 
useful to discuss briefly the various known relations. 

4.1. Stationary and diffusion-controlled processes 
Under steady state as well as under pulsed irradiation the relative quan- 

tum yield is 1403 

tT 1 
-= 
r70 1 - 4nDRCAr0 

[1 - 7l1’2 qexp(q2) U - erf(q)] I (13) 

where R is the encounter distance of the donor-acceptor pair, CA the 
acceptor concentration and D the mutual diffusion coefficient of the two 
species. When the diffusion coefficient D = 0, i.e. for stationary processes, 
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Fig. 1. Plots of various energy transfer functions against t/r*: - - -, eqn. (6); -, 
eqn. (6); e....., 2nd term, eqn. (6). 

Fig. 2. Plots of various energy transfer functions against t/70: -, eqn. (8); .-..--, fiit 
term, eqn. (8); . - - -, second term, eqn. (8); - .. - *. -, third term, eqn. (8); - - -, 
fourth term, eqn. (8). 
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Fig. 3. Plots of various energy transfer functions against t/To: -, eqn. (11) (left ordi- 
nate); -a-*, eqn. (10) (right ordinate). 



eqn. (13) reduces to [2] 

rllrlo = l--r 112Qexp(q2) 11- erf(q)I (14) 

The parameter q of eqn. (14) corresponds to ($.)7r3’2R$A; the same 
parameter, for the relative quantum yield of eqn. (13) is q = b/t~‘/~, where 
a = l/r,, + 4nDRCA and b = 4R2CA(nD)1’2. 

4.2. Stern-Volmer model 
This model corresponds to an energy transfer under steady state irradia- 

tion in solution; its relative quantum yield is generally expressed as [ 341 

7) 43s 1 
- =_= 
70 IO 1 +KsvC, 

1 

= 1 + k&CA 
(15) 

where Is is the luminescence intensity under steady state irradiation in the 
presence of an acceptor and I,, the intensity in the absence of irradiation ; 
K, is conventionally called the Stem-Volmer constant which is experimen- 
tally obtainable from the slope of the plot of the donor luminescence 
ratio Is/I0 uersus the acceptor concentration CA; k, is the quenching 
rate constant of luminescence. 

This relation can be deduced using the same formalism described in 
the previous paragraphs; in fact, under steady state conditions in solution 
the luminescence intensity Iss of an excited donor in the presence of an 
acceptor is given by 

m 

I ss= s I( t )dt (16) 
0 

where I(t) is the luminescence intensity of the same donor after a light 
pulse at t = 0; taking into account only the first term of eqn. (9), I(t) may 
be calculated [41] giving 

I(t) = CO exp(--ut) (17) 

where C,-, is a constant and a has been previously defined. Consequently, 
since IO is the luminescence intensity of the donor in the absence of 
acceptors, 

IO = cc)70 (18) 

Hence, 

Iss -= 

IO 

= 

7) -= m Csexp(--at)dt 1 = 
rlo J 

0 Co% 1 + 4&RT&, 

1 

1 +KSVCA 
W) 
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where the various parameters have been previously defined. Equation (19) 
is formally equivalent to the Stem-Volmer relation (eqn. (15)) provided 
that K, = 4nDRrc = kqrO, where k, is the usual Stern-Volmer quenching 
constant, expressed in M-l s-l. When I(t) accounts for both terms of 
eqn. (9), then eqn. (17) becomes [41] 

. 

I(t) = COexp(--ut - 2bt112) (20) 

and, for C, + 0, the Stem-Volmer constant K, defined in eqn. (19) 
becomes 

KSV = 47rDR~ + 4nR2(D7,)1’2 

where the first term corresponds to the previously reported Km of eqn. (19) 
and the second term gives the departure from the linear Stern-Volmer equa- 
tion, as a result of the viscosity of the solution. 

4.3. Perrin-Errnolaev model 
This model can also be deduced using the same formalism. In fact, the 

original Perrin model [35] corresponds to an energy transfer process whose 
rate constant is infinity for any distance between D* and A less than R,, 
and zero for any distance greater than R ,-,; i.e. this model proposes an “active 
sphere of interaction”. Ermolaev [19] found, in particular, that such a 
model was convenient to explain triplet-triplet energy transfer experiments; 
it can be quantitatively expressed by the relation 

v/90 ==w(-GV0) cm 

where CA is the concentration of the acceptor species (in molecules per 
unit volume) and V, is the volume of the “active sphere of interaction”. 

Referring to eqn. (l), at the critical time t = to, H(t) = N(to) and both 
terms of the exponential become equal. Hence 

ifU0) = ewC---2C~W0)1 (22) 

However [ 21, 

=K f exp(---2CAH( to)} dt 
0 

and 

7)o = K rexp(- z)di 
0 

where K is a numerical constant. Consequently 

rllrlo = exp{--- G2W0)l =exN+LV0) 

(23) 

(24) 

(25) 
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which is identical to the Perrin-Ermolaev relation (eqn. (21)) and V, = 
(4n/3)Rg is the volume of the “active sphere”, i.e. the value of the energy 
transfer function when it reaches its “critical” value H(t,) at time t = t,. 

The various relative quantum yields of luminescence described in this 
paragraph are summarized in Table 2. 

TABLE 2 

Relative quantum yields of luminescence 

(1) Steady state and pulsed irradiation: D = 0 

Q/?Io = 1 - ?r1’2qexp(q2) {I --i-f(q))) = 1 - (4n/3)CARi 

(2) Steady state and pulsed irradiation; D + 0 

3= 1 

7)o 1-c 4nRDCAr0 
[l --n 1’2qexp(q2) Cl - erf(q 111 

(3) Steady state irradiation; D = 0 (Perrin-Ermolaev model) 

J= 1 1 1 

170 I+ 4nRDCAr0 = 1+ KsvCA = 1+ kqToCA 

(4) Pulsed irradiation; D = 0 (Perrin-Ermolaev model) 

T//q0 = exp {--CAH(to)] = exp{- CAVO) - 1 - (4n/3)C~R9 

5. Conclusions 

From the previous paragraphs, the following conclusions may reasonably 
be drawn. 

(1) The various decay functions that describe the deactivation processes 
which an electronically excited species undergoes after pulsed excitation can 
be easily reduced to the general eqn. (1). This reduction has the advantage of 
defining an energy transfer function H(t), which more properly describes the 
energy transfer process, whether the nature of the interaction be coulombic 
or exchange. When the transfer processes are expressed in terms of these 
H(t) functions, the strict connections between the known equations 
obtained by theoretical approaches [2 - 35J become apparent, and in some 
cases their unexpected equivalence is also demonstrated. The influence of 
the various terms in the energy transfer functions U(t) is illustrated in 
Figs. 1 - 3; Table 1 summarizes the most useful transfer functions. 

(2) The relative luminescence quantum yields q/q0 are derived for the 
various conditions of irradiation; also the well-known Stem-Volmer and 
Perrin-Ermolaev models can be derived and expressed employing the 
same formalism, as shown in Sections 4.2 and 4.3. Table 2 summarizes the 
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various equations. It is worth observing that the relative quantum yields 
discussed in Section 4.1 are based on the assumption that energy transfers 
occur from each excited donor to all but the nearest acceptors; as shown by 
Ore [42] the extension to include second nearest or higher order acceptors 
become significant only at acceptor concentrations higher than those usually 
found in luminescence quenching experiments [ 36, 371. 
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Appendix 

The following decay functions p(t) have been derived by various 
authors for different conditions, under pulsed excitation. 

Al. Dipole-dipole interac tiun 
Al.1. D = 0 [Z, 14,331 

A1.2. D + 0 
Al.2.1. Kurskii and Sebvanenko 1151 

F(t) = exp - t 
8.4(+0, + D2)r0 

R: 
(A21 

70 

A l-2.2. Ku rskii and SeJivanenko 

F(t) = exp(-A t - Btlf2) 

where 

A = 1 + 4nD12R12 $ 
70 

1151 

(A31 
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and 

N 
B = 4nD12 - 

=:2 + 
47rR: N 2 

V (vrD12)1’2 12r0Rf2 v (7rD,2)r’2 

A1.2.3. Yokotu and Tunimoto [16] 

4 1 + 10.87x + 15.50x2 
-3n 9 /2C(a[ t)w 

1 + 8.743x (A4) 

where 

x = D,-l/s ta/s OL = R:/rO 

A1.2.4. Voltz et al. [17] 

Ro R 
- 4nDN’RCt I + 

1WrOR4 ’ + (,D)1’2 II (A51 
A2. Exchunge interaction 

A2.1. D = 0 
A2.1.1. Inokuti and Himyarna [4] 

L3 
8R3C {(lnAt)3 + 1.73(lnAt)2 + 5.9(lnAt) + . ..) 

0 1 
VW 

A2.2. D # 0 
A2.2.2. Pilling and Rice [14] 

- 4rReffDt - 
8nDR& t112 

(~0)~‘~ t 
(A71 

Equations (Al) - (A7) contain the following parameters. In eqn. (Al), 
2q = (4/3)n3’2R03CA, R is the distance between the excited donor and the 
acceptor, R. is a critical distance at which unimolecular (in D*) and bi- 
molecular processes (transfer to A) occur with the same probability, l/7,, is 
the rate of any channel of decay for D* and CA is the acceptor concentra- 
tion; in Galanin’s original paper [ 33 1, 2q is expressed in terms of experi- 
mental spectroscopic data. In eqn. (AZ), q = (Y~/Z)~‘~(R~/R)~N, where N is 
Avogadro’s number and D1 and D, are the diffusion coefficients of donor 
and acceptor. In eqn. (A3), Dr2 = D, + D2, RI2 is the sum of the molecular 
radii of the donor and the acceptor, and V is the volume of the system. In 
eqn. (A5), N’ = 6 X 1020. In eqn. (A6), 

A = 1 exp - 2% 

70 L 



where L is the Dexter parameter [3 3 corresponding to the average Bohr 
radius of either D* and A. This parameter has been questioned by Dow [5] 
and other doubts were raised by Marshall et al. [6] on the possibility of 
employing this equation in the liquid phase: C, = 3/4mRg. In eqn. (A7), 
Reff is equal to R at normal viscosities (EJ = 1W5 cm2 s-l) and it is a 
rather complex function at other viscosities; the published equation con- 
tains some inconsistencies, probably due to misprints 1143 revised in 
eqn. (A7). 


